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I.    INTRODUCTION 

The far-field plane wave backscattering cross-section, or uhe radar 
cross-section (RCS) of a finite length, perfectly-conducting, solid, 
circular cylinder on a planar, uniform impedance surface of infinite 
extent is investigated in this report.    The cylinder is oriented such 
that its axis is perpendicular to the impedance surface as shown in 
Fig. 1.   An impedance surface at z=0 implies that the total electro- 
magnetic field must satisfy the impedance boundary condition [1] there. 
The region corresponding to z>0 is free space, and the value of the 
surface impedance, Zs at z=0,is taken to be a known complex function 
of the frequency of the incident plane wave. 

In the present study, we are primarily interested in calculating 
the RCS gf the cylinder in Fig. 1 for the range of aspects corresponding 
to 25' <e '< 88

c It is assumed that the length, i,of  the cylinder is 
larger than its radius, a, and that ka is at least a wavelength or 

more; here k is the free space wave number (k 2v x  = wavelength). 

The method of analysis employee in this report for calculating the i-JCS 
is based on the geometrical theory of diffraction (GTü) [2],    Although 
the GTÜ is an asymptotic high frequency ray technique, it is known to 
be extremely accurate even for moderately high frequencies.    Details 
of the GTD analysis for estimating the RCS are presented in Section II. 

FINITE LENGTH 
CIRCULAR CYLINDER 
OF LENGTH«! AND 
RADIUS 

T 
je 

i    ■        \^r 

INCIDENT PLANE WAVE 

UNIFORM IMPEDANCE SURFACE 

Fig. 1.    Finite circular cylinder on an 
impedance surface. 

Numerical results are presented in Section III, wherein the RCS 
of the cylinder in the presence of the impedance surface is compared 
with the RCS of an identical diameter cylinder in free space without 
the impedance surface;  the length of the cylinder in free space is 
selected to be twice that of the cylinder on the impedance surface. 
The RCS of the cylinder in the presence of Zs is much higher than that 



of the cylinder in free space. Also, the RCS increases rapidly with 
increase in frequency. In particular, numerical results for the RCS 
are presented as a function of the aspect ei(250<e',<880) for two types 
of polarization, and for a given set of frequencies. The two types of 
polarization correspond to the case when the incident electric field 
vector lies either in the plane of incidence or perpendicular to the 
plane of incidence, respectively. The former is commonly referred to 
as the parallel polarization case, whereas the latter is commonly 
referred to as the perpendicular polarization case. In the absence of 
Z., the RCS of the finite cylinder in free space is generally higher for 
the parallel polarization than for the perpendicular polarization case; 
in the presence of Z?, the cylinder RCS for both polarizations is 
generally of comparable magnitude. In particular, the RCS of the 
cylinder on Zs is very much governed by the reflection coefficient 
associated with the surface impedance Zs. The behavior of the reflection 
coefficient.associated with Zs is illustrated in Section II over the 
range 250<e''<880, for the selected frequencies of interest. A discussion 
on the behavior of the RCS of cylinders with and without Zs is given in 
Section III. The RCS in the vicinity of end fire (o^O) is not presented 
as it is not of interest in the present study. The end fire RCS may, 
however, be readily estimated to a high degree of accuracy via the 
physical optics approximation [4]. 

II. ANALYSIS 

As mentioned earlier, the polarization of the incident plane wave 
is assumed to be either in the olane of incidence or perpendicular to 
the plane of incidence. When the incident electric field vector lies 
in the plane of incidence (x-z plane), we will define this to correspond 
to the acoustic hard case (with respect to the edges Qi and Q^ of the 
cylinder in the x-z plane); whereas, we will define the other polariza- 
tion to correspond to the acoustic soft case (with respect to the edges 
Qi and Q2). The acoustic hard case may also be viewed as one for which 
the incident magnetic field is polarized perpendicular to the plane of 
incidence. Let ul  denote the incident field.* 

(1)     u; (x,z) = A ei[kx sine1 + kzcoso1] 
S ' ' '   s 

The subscripts s and h refer to the acoustic soft and hard cases, 
respectively.^ Thus, IL denotes a y-directed electric field; whereas 
Uh denotes a y-directed mannetic field. The superscript i refers to 
incident field quantities. A stands for the known constai tant  complex 

amplitude of the soft and hard type incident fields. For large ka, 
the dominant contributionsto the backscattered field are those resulting 

w     ■jut 
An e       time dependence is assumed and suppressed throughout the 
analysis. 



from the process of double-reflections, edge diffraction, and from the 
first few interactions between the edge diffracted fields and the surface 
at z=0.   The contribution to the backscattered field from surface rays 
which propagate around the cylinder is negligible for large ka; these 
rays have been excluded in the present analysis.    In the present case, the 
edge diffracted rays are produced via the diffraction of the incident plane 
wave by the circular rim of the end cap of the cylinder at Z=ä.    The 
specific double reflections, single edge diffractions, and the orders 
of edge diffraction-surface reflection interactions which have been 
retained in the present analysis are illustrated via the pertinent 
rays that are associated with these interactions in Figs. 2(a), 2(b), 
2(c), and 2(d), respectively.    With no loss of generality, the RCS is 
calculated in the x-z plane for convenience; thus, the rays depicted 
in Fig. 2 must also lie in the x-z plane.    Figure 2(a)  indicates the 
doubly reflected rays which contribute to backscatter; these rays 
are analogous to those present in the corner reflector problem.    QA 
and Qp denote the points of reflection on the cylinder and the impedance 
surface, respectively.    The incident ray at Q/\ reflects energy along 
the ray path Q/\QB such that the second reflection at QB   generates a 
reflected ray in the backscatter direction, and vice versa.    Conse- 
quently, Fig. 2(a) illustrates the existence of two reciprocal   (doubly 
reflected) ray systems; actually, there exist a doubly rilinite set of 
the doubly reflected ray fields (corresponding to these two reciprocal 
ray systems) which contribute to the backscatter, because every point 
along the cylinder (x=a; y=0; 0<Z<A) constitutes a point of reflection. 
Figure 2(b) indicates the interaction between singly edge diffracted 
rays and the surface at z=0.    In particular, the incident ray at the 
edge Qi produces a diffracted ray which strikes the impedance surface 
at QR to produce a reflected ray in the backscatter direction, and vice 
versa.    Thus, Fig. 2(b) also describes two reciprocal  ray systems, each 
of which yields identical  field contributions in the backscatter 
direction via the reciprocity theorem for electromagnetic fields. 
One must include the effects of both reciprocal ray systems in Fig. 
2(b) for evaluating the backscattered field, and since the fields 
associated with each of these reciprocal ray systems is identical in 
the far zone, the total far zone backscattered field corresponding 
to only these interactions is si.nply twice t^at given by either of 
the two reciprocal ray interactions.    The field contributions corre- 
sponding to Figs. 2(a) and 2(b) are analyzed here by first picking a 
field (or observation) point in the near zone (so that the doubly 
reflected, the diffracted-reflected, and the reflected-diffracted fields 
propagate along slightly non-parallel or convergent ray paths to the 
field point), and by then taking the limit of this near field quantity 
as the field point recedes to infinity (or far zone); the limit now 
gives the backscattered field corresponding to Figs. 2(a) and 2(b). 
In the near zone, only one doubly reflected ray of Fig.  2(a) contributes 
to the field there; this simplifies the analysis.    Figure 2(c)  indicates 
the incident rays which strike the cylinder edges at Qi and Q2 to 
produce singly edge diffracted rays which emanate from Q] and Q2. 



Multiple edge diffraction effects between Qi and Q2 are neglected; 
these multiple interactions may be excluded for large ka.    For 
moderately large values of ka, these interactions are still quite 
small  in comparison with the singly diffracted fields.    Finally, Fig. 
2(d) illustrates the ray system in which the incident field at QR 
illuminates the edge Q] via reflection from QR-, this in turn produces 
diffracted ray from Q] which strikes the surface at QR to produce a 
reflected ray in the backscatter direction. 

(0 (d) 

Fig. 2.    Dominant rays for far-zone backscatter 
calculations. 

The new uniform GTD curved edge diffraction coefficient of 
Kouyoumjian and Pathak [3] is employed to calculate the edge diffrac- 
tions at Qi and Q2.    On the other hand, the Fresnel  reflection 



coefficients associated with the impedance boundary at z=0 are employed 
to calculate the reflection at QR and Qß.   The reflection from Q^ on 
on the cylinder is calculated as usual in terms of the reflection 
coefficient for a perfectly-conductinq flat surface which is locally 
tangent to the cylinder at Q/^.    It is noted from Fig. 2(a) that 
QA^Ql  and Qß^R as t,ie double reflection shadow boundaries are 
approached.    Consequently, the edge diffraction-surface reflection 
interactions of Fig. 2(b) take place along the double reflection 
shadow    boundaries in the far zone.    In the far zone, the unshadowed 
region   where double reflections are present   shrinks to a thin line 
(dot-dashed reference line).    As mentioned earlier, this far zone re- 
sult (i.e., backscattered field corresponding    to Figs. 2(a) and 2(b)) 
is obtained via a careful  limiting operation on the corresponding near 
field quantity. 

We will first analyze the interactions in Figs. 2(c) and 2(d) 
in a straightforward manner.    The slightly more complicated analysis 
of the interactions in Figs. 2(a) and 2(b) will follow subsequently. 

Let U     and U     refer to the fields diffracted from the edges Q]  and 

h h ,, ,? 

Q2,  respectively.    Then, U     and U      ar given in terms of GTD as; 

(2) 

and 

Udl ^U1 

s       s 
h       h 

h 

(Qi) Dc U vVA/irS sJ 
■iksi 

(3) s       s (Q2) Ds (VV 4- 'e2 -iks. 

(pe2 + SV 

Fig. 3.   Angles and distances associated with 
Fig. 2(c). 



where <j>i = IT- e1 and (|>2 = 7r/2 - e as in Fig. 3. The far zone distances 
Si and So measured from Q] and Q2 are also shown in Fig. 3. The caustic 
distances pe] and pe2 are 

(4); (5) pel = 
2 sine' 

pe2 2 sin e i 

The D    (i^')  in (2) and (3) is the edge diffraction coefficient given 

h 
in reference [3]; in the present case D    (v,/) of reference [3] re- 

h 
duces to the Keller form: 

(6a) Ds  (^^,) 

■WsinIL 
Vn n> 

'2 ^k cos - - cos |- n n 
IT cosF cos?ri 

with 

(6b);  (6c) 3    =^^11/'      ;      and n = 7   for a local right angle wedge 
at Q1 and Q2. 

rdr 
Next, we let U      denote the field associated with the reflected- 

h 
diffracted-reflected ray in Fig.  2(d).    It can be easily shown that 

(7) 

h h 

RS(QR) 
h 

Ds (e'.e1) 
s3 (pc + s3) 

■iks. 

where 

(8) Vs  (x.z) = As e 

h h 

and the distance s3 is shown in Fig. 4. 

i[ kx   sin e1 - kz cos e1] = yi -      _zx 

h 



«I      «. 

(IMAGE OFQ,) 

Fig. 4.   Angles and distances associated with 
Fig. 2(d). 

The caustic distance p    is identical  to p , of (4).    Ü    (e1,61)  is 

h 
given by (6a) with ip = e1 and ip' = 8  ; also n = 3/2 as before. 
Finally, the surface reflection coefficient at Qn is given by: 

(9) RS(QR) = 
cos e1 --Je (z ) - sin2e1 

f 
2J cos e1 + A|er(Zs) - sin e 

(10) Rh(QR) 
e^(Zj cos e1 -Je (ZJ - sin2 e1 

r4 s r   s 

£rUs) cos e1 +frUs) - sin 2 J 

wherein er(Zs) is a given complex function of the surface impedance Zs; 
since Zs is dependent on the frequency, e {ls)  would also be automatically 
frequency dependent. On the other hand, R depends not only on the 

. h 
frequency, but on the angle of arrival e1 as well. The behavior of R 

i ^ as a function of 6 for a given set of frequencies is presented in 



Figs. 5-14; these values of Rs are calculated via (9) and (10) by 

employing given values of er(2s) a^ *'ie appropriate frequencies. 
Both, the amplitude and phase of R- are illustrated in these 

R 
figures. 

Next, we analyze the interactions in Figs. 2(a) and 2(b) by first 
picking a near field point in which case only one doubly-reflected ray 
of Fig.  2(a) contributes to the field;  let it's field be denoted as 

U    .    For the sake of definiteness, let the near field point be above 
h 

the dot-dashed line of Fig.  2(a).    Thus, 

(11);  (12)      Us
rr^ Rs  (Qz) fti   (Qc) I    P; d     e -ikd; pr = a/2 sin e\ 

h h     ^      h )  r 

The distance d is from Qr. to the near field point.    Qz and Qc are points 
of reflection on the surface z=0 and the cylinder, respectively.    The 
caustic distance pr for the ray reflected fron the cylinder (after 
reflection from z=0) turns out to be identical to cei of (4).    In the 
far zone limit, ch-S]. 

Now, let Ucr and Usd denote the diffracted-reflected, and the 

reflected-diffracted ray fields corresponding to Fig. 2(b), respectively. 
In the far zone, U^r = U^d.    In the near zone (where (11)  is evaluated): 

(13) Us'd^ (Q^ Rs  (QR) Ds  i*r*{)j^*C a"1'51 

'1  (pc + sl) 

and PC = p , of (4). The distance s-j is fron Q, to the near field point. 

Also, $!,  =  e1 and CM^-Q1 in the near zone; however, ^-»-ir-e1, and 

sj-^s-, (also s-,-'-") in the far zone. When the far zone limit is taken, 

one may approximate the transverse spread factor/:;-^— of the ray tubes 

by j|£- in the field expressions (for the far zone condition S>>P). S and 
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p are the ray and caustic distances, respectively. Hence, s could 
be s-i, Sp or s3; and o could be p ,, p or p , etc. The D in (13) 

h 
if taken from reference [3] to be: 

(14) 

h 

-i- 

^Ttk 

7,-sin^. FCkL^U^/)] 
1  

cos — cos- 
^l" «^l 

^"'^^'i'a^l _ 

with 

(15a; 15b)   a+(3) = 2 cos2 M^I-i.  ;  a(ß)=2cos
2| 

and n = 3/2 as before for a local right angle wedge at Q,. In the 

present problem, F[kL1a(<t-(t)')] and F[kLrna (({(•♦^,)] may be replaced by 
unity since klJa^.-*') and kLrna (*.+*l') are much larger than 10 due to 
the fact that the backscatter direction is not only far from the 
incident shadow boundary but the incident and reflection shadow 
boundaries are sufficiently far apart. One notes that F(x) essentially 
becomes unity when x * 10; when all F(x) terms become unity, the D of 

(14) reduces to the Keller form of 6(a). From reference [3], L  is 
given by 

ro s; (p^sj) (p![) (p^) 

pc (p^s^) (P^s|) 

In our problem, p1*,-*"* , p, -- p   , and P    = P    =  ~—r- , so that 
1 c      r c       r     2 sin e1 

(16) Lro = s! 
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Let (j)i.= ir - e1 - e where e is a positive number however small, 
(ju = e1 as indicated previously.    Then Ü   of (14) becomes 

(17) Ds (^.^j) % 

with 

(18) 

and 

(19) 

/%& 

1        .       TT 
nsl% 

C0Sl.C0S[^_el^ 

±k{cotw + rFkLro^i+*i^ 

[kL^aU^pJ   %^X rkL^aU^^) 

ro ^'^(^■^j) e 
TT 

1T 
.ir   .   .., ro i^+ ikL,ua($1+^) 

2   TT- e «  e a((}>1+({)i) = a(iT-e) = 2 cos   -^ ^ 'in 2   ^ 2 

Therefore, 

(20) F [kLroa(*1+<D])] 
JTrks'        ij p 

-\ -y-i- e   e       -   i   ksj   e 

Also, 

(21) s-, c ^Ä sin e 

so that 
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(22) 

h 

e       n        n 

J2vk   cos J- - cos Tr-2 e1 

•{I 
■1? 

.,/ i* 

2n  jZvk 
cot -±-5-^ + k£ sin e n " 2 

/2TTk 

,rd Incorporating (22) in (13) yields a near field vdlue for U      ; one 

dr       h 
could similarly obtain a near field expression for U     in terms of 

Ds((})1 ,<|)|) where $j = u - e    and 4)■, is chosen to be e    - e.    The choice 

h . 
of <(), = rr - 9    - E and *, = e    - e ensures that the near field point 

rd       dr where U     + U    is evaluated is indeed in the region where the doubly 

h h 
reflected field u|7 exists.    Consequently, the total field within this 

h 
region (which collapses to a line in the far zone as s,-*») for the 

interactions in Figs. 2a and 2b is the far zone limit of 

Udr + Urd + Urr 

s        s        s 

When U (^^j) is simplified in the manner that D U,,^) uf (14) is 

h h 
simplified to obtain the expression in (22), and e is allowed 
to approach zero as s^00 (far zone), the following far zone result for 
ydr + yrd +   ^r is obtained: 
j o b 

h        h h 
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i il '■■ i -ikR 
(23) U ̂  +   Udr     + UrdU ? A    R (QD) ei2ka sin ü    e 4 ji^iO. ,   £ 

s      rs 
h       \ h 

1s    svv<R 
h   h 

+ 2 As «s^R5 e 

h    h 

i     ]J   Hsin ^ i2ka sin ö     e       , n bl" n 

2irk ; C0S i . cos JLJJLI 

1      C0SK 

sin^  1 

-ikR 

f2 sin 9 

Similarly, the far zone results for Udl, Ud2 and U^dr in (2),  (3), and 

h       h h 
(7) yield: 

(24) Udl + uf + U[dr ^ 

h        h h 

fl    Qi2k[a sin e1" + a cos e1]n ,     rf   * 
A   e     L Ds^l '^l 

h \i2 sin ö 

i ,i- , fl   Qi2k[-a sin e   + Ä cos e ]    , v  . 

h h I251"6 

+ AS     W 
h     h 

2 Qi2k[a sin e1 £ cose^D (e^e1)   I     a     . 
s 'J2 sin e1 s 
h 

■ikR 

32 



The following relationships have also been employed in obtaining (23) 
and (24); these relationships are obtained purely from geometrical 
considerations which are valid in the far zone. 

■iks 1 
A e2ik[a sin e1 + A cos e1] e-ikR 

h ' h K 

"2 i i      -ikR 
ui(Q ) e %   A e2ik[-a sin e   + JL cos e ] e  

S L. S ry S K 

h ^ h 

^{Q ) £ I  r, A   e2ik[a sin e1 - i cos e1"] e'^ 

h ^ h 

h 1 h 

The distance R which occurs in the above expressions is shown in Fig. 3. 

The RCS is given by o  , where 

(25) ac =    Um^RZ 

h       *~ 

Udl  + Ud2 + Urdr + Urr + Udr + Urd 

s s s s        s 
h h h h h 

rd 2 1 A 
5> s 
h h 

1 

The various field contributions to a   which appear on the RHS of (25) 

h 
are given in (23) and (24). 

Since we would like to compare a   with the RCS of the same diameter 

h 
cylinder of length 2si in the absence of Z , the problem of Fig.  15 which 
corresponds to the latter case is trivially analyzed.    Thus, denoting 
the RCS for the finite length {= Zu) cylinder in free space by'a' t we 

h 
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express a    in terms of the backscattered ray fields as; 

(26) ^    _ Tim   -    D2 
s     P>o 

h 

dl + ^2 + ^3 
s s        s 

2 / j        2 
/|ASI 

1  h 

U°    and U     in (26) correspond to the edge diffracted fields emanating 

h h ,,2 
from Q-,  and Q2, respectively; they are identical to U    '   in (2) and (3). 

d3 h 

The field U°   which is the field diffracted from Q3 is similarly given by: 

h 

,d3 .. „i e3 •iks. 
(27) U- . u;(Q3) DsM3WsJp , + sJ    e 

h 3vpe3 

which in the far zone reduces to: 

(28) U d3   % A   ei2k[a sin e1  - i cos e1] D {Qi^)   i_a        e 

h h ^sine1 

-ikR 

In deriving (28) from (27), the following far zone approximation is 
employed: 

r^ iks. 
(29)     W iT^hrj e    3 ^s ^ 

i2k[a sin e1 - £ cos e1] 

r3VMe3 33 

•ikR 

W» e3       R 

where p 3 = —-—.   .    Also, «K = e1 in this case, and D    (^f^) is 
2 sin e 

given in 6(a) with <})-, = ö . 
h 
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Fig. 15.    Dominant rays for RCS calculation of a 
finite length cylinder in free-space. 

III.    NUMERICAL RESULTS AND DISCUSSION 

In this section, numerical results are presented for the RCS of 
a circular cylinder on a uniform impedance surface (whose surface 
impedance = Zs)as in Fig.  1.    The RCS for the soft case (i.e., the 
case for which the incident electric field is parallel to the edge 
of the truncated cylinder in the x-z plane) is denoted by oc, whereas 
the RCS for the hard case (i.e., the case for which the incident 
electric field is perpendicular to the edge of the cylinder in the 
x-z plane) is denoted by a^.    Both, as and a^ are presented as a 
function of the angle of arrival e' of the incident plane wave} the 
range of ei chosen in these calculations corresponds to 250<ei<88o. 
Numerical  results for a^ are presented at selected frequencies, namely 

at 1, 2, 4, 8 and 16 GHz, respectively, in Figs.  16-25 for the case 
* = 0.5 meter, and in Figs. 26-33 for the case *- = 1 meter; here i  = 
length of the cylinder.    Furthermore,  the values of a- are compared 

against a     where a    and a.   are the RCS of the same diameter cylinder 

(as in os calculations) of length 2^  in free-space (see Fig. 15);  the 
h 

subscripts s and h in o^  have the same meaning as in a-.    It is noted 

that the diameter of the cylinder ip all  the cases is fixed at the 
same value which is chosen to be 0*5. meter.    The "a" part of Figs.   16- 
33 indicate the values of as or a^for the RCS of the cylinder on Z5, 
whereas  the "b" part of these figures  indicate the values of as or Jt, 
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L 

for the corresponding equivalent cylinder in free space.    The units of 
0     and o    are dB/^2 in these plots.    The values of the reflection 

h n 
coefficient R     associated with the impedance surface are given in 

^ i Figs.  5-14 (in Section II) as a function of fa   for the selected 
frequencies of interest; these values of R, are employed in calcu- 

R 
lating as. 

Certain observations concerning the behavior of a, and cL can be 
n h 

be made from Figs.  16-33.    It is noted  in general  that a.  is much higher 
R 

than Sg; thus, it is concluded that the presence o' the surface 
h 

impedance Zs is to effectively increase the RCS of the cylinder over 
that of the "equivalent" cylinder in free space.    It is also noted that 
\ is generally higher than SV;  in contrast, os is in general  very 
slightly higher than c^ except near ö1= 90°.    Furthermore, the behavior 
of ö    is very strongly governed by the behavior of the impedance surface 

reflection coefficient R,..    For example, RL, in Figs. 10-13 indicates 
R . n 

a suddent dip in amplitude around e1 = 85°; this effect is al§o mani- 
fested in the plots of o^ which show a significant dip near e1  = 85°. 
Of course, oh increases on either side of this dip (near ei = 85°). 
On the other hand, o^ is generally very slightly higher than a(l except 
for 6i  near 90° where a. decreases significantly.    Since the value of 
a
s is calculated over 250< ei<880, the significant decrease in cs for 

di  near 90° is not apparent in the present plots for the higher frequencies; 
it is believed that this is due to the fact that at these higher frequencies 
JS decreases significantly only for e1'  extremely close to 90°,  i.e.,  in 
the range 88o<e1^90o which is excluded  in the present calculations.    The 
values of as and a^ in general  show a rapid, but very small  size 
fluctuation at the higher frequencies;   in fact, c? and oh tend to 
be fairly constant over 25c :e1<880 at the higher frequencies except 
near ei  = ^5° for a^ and near ei  =90° for as, respectively.    In 
contrast, a^ indicates higher size fluctuations which of course 

R 
become more rapid at the iiigher frequencies as one night expect 
from GTD considerations.    Finally, the levels of os, o^, S^ and 
5^ increase with increase in frequency in each case, since the 
electrical  surface area of the scatterer effectively increases 
with increase in frequency of the incident plane wave. 
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Fiq. (16b), (osA2) in dB 
at f = 1 GHz, 
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Fig.  (22b).   (ah/X2)  in dB vs e1  at f = 2 GHz, 
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Fig.  (26b).    (as/A2) in dB   vs e1* at f = 1 GHz 
and ä = 1 m. 
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Fig.  (27b).    (^s/x2) in dB vs e1 at f = 2 GHz. 
and ^ = 1 m. 
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